The Complexity of Multi-Mean-Payoff and Multi-Energy Games
نویسندگان
چکیده
In mean-payoff games, the objective of the protagonist is to ensure that the limit average of an infinite sequence of numeric weights is nonnegative. In energy games, the objective is to ensure that the running sum of weights is always nonnegative. Multi-mean-payoff and multi-energy games replace individual weights by tuples, and the limit average (resp., running sum) of each coordinate must be (resp., remain) nonnegative. These games have applications in the synthesis of resource-bounded processes with multiple resources. We prove the finite-memory determinacy of multi-energy games and show the inter-reducibility of multimean-payoff and multi-energy games for finite-memory strategies. We also improve the computational complexity for solving both classes of games with finite-memory strategies: while the previously best known upper bound was EXPSPACE, and no lower bound was known, we give an optimal coNP-complete bound. For memoryless strategies, we show that the problem of deciding the existence of a winning strategy for the protagonist is NP-complete. Finally we present the first solution of multi-mean-payoff games with infinitememory strategies. We show that multi-mean-payoff games with mean-payoff-sup objectives can be decided in NP ∩ coNP, whereas multi-mean-payoff games with mean-payoff-inf objectives are coNP-complete.
منابع مشابه
The Multiple Dimensions of Mean-Payoff Games
Outline We consider quantitative game models for the design of reactive systems working in resource-constrained environment. The game is played on a finite weighted graph where some resource (e.g., battery) can be consumed or recharged along the edges of the graph. In mean-payoff games, the resource usage is computed as the long-run average resource consumption. In energy games, the resource us...
متن کاملFixed-Dimensional Energy Games are in Pseudo-Polynomial Time
We generalise the hyperplane separation technique (Chatterjee and Velner, 2013) from multi-dimensional mean-payoff to energy games, and achieve an algorithm for solving the latter whose running time is exponential only in the dimension, but not in the number of vertices of the game graph. This answers an open question whether energy games with arbitrary initial credit can be solved in pseudo-po...
متن کاملLooking at Mean-Payoff and Total-Payoff through Windows
We consider two-player games played on weighted directed graphs with mean-payoff and total-payoff objectives, two classical quantitative objectives. While for single-dimensional games the complexity and memory bounds for both objectives coincide, we show that in contrast to multi-dimensional meanpayoff games that are known to be coNP-complete, multi-dimensional total-payoff games are undecidabl...
متن کاملApplying Blackwell optimality: priority mean-payoff games as limits of multi-discounted games
We define and examine priority mean-payoff games — a natural extension of parity games. By adapting the notion of Blackwell optimality borrowed from the theory of Markov decision processes we show that priority mean-payoff games can be seen as a limit of special multi-discounted games.
متن کاملFaster algorithms for mean-payoff games
In this paper, we study algorithmic problems for quantitative models that are motivated by the applications in modeling embedded systems. We consider two-player games played on a weighted graph with mean-payoff objective and with energy constraints. We present a new pseudopolynomial algorithm for solving such games, improving the best known worst-case complexity for pseudopolynomial mean-payoff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Comput.
دوره 241 شماره
صفحات -
تاریخ انتشار 2015